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In a recent paper, Marr, Müller-Linow, and Hütt �Phys. Rev. E 75, 041917 �2007�� investigate an artificial
dynamic system on metabolic networks. They find a less complex time evolution of this dynamic system in real
networks, compared to networks of null models. The authors argue that this suggests that metabolic network
structure is a major factor behind the stability of biochemical steady states. We reanalyze the same kind of data
using a dynamic system modeling actual reaction kinetics. The conclusions about stability, from our analysis,
are inconsistent with those of Marr et al. We argue that this issue calls for a more detailed type of modeling.
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Within living organisms, matter is constantly converted
between different molecular species. It is often assumed that
concentrations of metabolites tend to settle into steady states
�rather than showing periodic or chaotic behavior� �1�. Fur-
thermore, experimental studies of metabolic pathways are
typically performed under steady-state conditions �2�. Al-
though the steady state is, strictly speaking, a mathematical
abstraction, it is nevertheless a useful reference state �3�. The
steady-state assumption is also fundamental to traditional
metabolic control analysis �2�. In a recent paper �4� Marr,
Müller-Linow, and Hütt hypothesize that the network struc-
ture of metabolism is an important factor for promoting a
steady-state, rather than a complex, dynamics. The authors
run an artificial dynamic system on the networks. In short, a
vertex i can have two states, 0 or 1. If the sum of the state
variables in the neighborhood of i exceeds a fixed threshold,
then i changes to the other state. This scheme is very differ-
ent from real biochemical dynamics and traditional models
of reaction kinetics. First, the state variables in metabolic
models are usually continuous �concentrations �2�� or some-
times discrete variables �molecule counts �5��, but never bi-
nary. Second, the sum of these variables is conserved �if in-
and outflow is neglected�; whereas, in the dynamics of Marr
et al., this is not the case. This dynamics in fact does not
reach a steady state; instead, the authors analyze the com-
plexity of the output time series with entropylike measures.
They conclude that real metabolic networks give a less com-
plex output than different ensembles of model networks, and
argue that this implies that the structure of real metabolic
networks may promote steady-state dynamics. However, no
theory for how the values of the “entropies” of the binary
dynamics relate to the stability of metabolic flux is given.
Many authors have used binary dynamics to model other
processes of cellular biology, such as signal transduction
�e.g., Ref. �6�� or genetic regulation �e.g., Ref. �7��. However,
these models explicitly try to describe systems in which the
components, at least under some circumstances, show
switchlike, binary behavior �6�. Moreover, the lack of de-
tailed understanding of, e.g., gene expression makes it more
natural to use simplified dynamics to uncover underlying
principles. Metabolic reactions follow known principles of
chemistry and are described by well-established differential
equation models. Therefore, in contrast to the mentioned in-
formation processes, there is no need for, or natural interpre-

tation of, a binary description of the metabolism. Therefore
the conclusions of Marr et al. can be validated by comparing
their results to results obtained using such standard differen-
tial equation modeling. We follow this approach to find no
significant difference between real and null-model networks.
Our simulations in this Comment are rather limited, but suf-
ficient to make the point that the study of Marr et al. cannot
rule out the possibility that stable steady states can be ex-
plained more simply, as direct consequences of the reaction
kinetics, rather than as a result of the interaction between the
network topology and the dynamic system.

The examples of Marr et al. of real metabolic networks
are taken from a work of Ma and Zeng �MZ� �8�. They are
substrate graphs �9� where a substrate is linked to the prod-
ucts of a reaction �Fig. 1�a��. MZ also preprocessed the data
by omitting ubiquitous “currency metabolites” �10�. We also
use the MZ networks as the starting point for our simula-
tions. In constructing the networks, information is lost; so if
one wants to simulate the reaction system with a substrate
graph as a starting point, one needs �explicitly or implicitly�
to recreate the reactions via a model. From two assumptions
about reaction systems, we propose a simple scheme to cre-
ate a plausible set of reactions that can be reduced to a given
substrate graph. We first assume that all reactions are of a 2-2
form A+B↔C+D, or 2-1 form A+B↔C. These are the
most common forms of biochemical reactions. We do not
include more complex reactions, mostly because it would
significantly increase the computational complexity. Our sec-
ond assumption is that the number of reactions creating an
edge in the substrate graph is rather small �we confirm a
posteriori that the average number of reactions per vertex is
similar to that of the real substrate graph�. The following
algorithm is a simple way of fulfilling these assumptions.
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FIG. 1. �Color online� Illustration of the construction of sub-
strate graphs from chemical reactions �a�, and our method for rec-
reating a reaction system from a substrate graph �b�.
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�1� Start with all edges unmarked.
�2� Pick one unmarked edge �A ,C�.
�3� Find the maximal, full bipartite subgraph K�A,C� �a

subgraph consisting of two vertex sets, and edges between
every pair of vertices in the different sets, but no edge be-
tween vertices in the same set� that contains �A ,C�. �See Fig.
1�b�.�

�4� Pick one four-cycle of K�A,C� including �A ,C� �say
�A ,C ,B ,D ,A��. �See Fig. 1�b�.�

�5� Add A+B→C+D and C+D→A+B to the set of re-
actions and mark the edges �A ,C�, �C ,B�, �B ,D�, �D ,A�.

�6� If there are unmarked edges go to step 2.
K�A,C� gives all reactions of the 2-2 form that induce the

edge �A ,C� in a substrate graph. If K�A,C� is empty at step 3,
then �A ,C� must have been generated by a reaction of a 2-1
form. Therefore, instead of K�A,C�, consider the set L�A,C�, of
�A ,C� and its adjacent edges, and deduce reactions of the 2-1
form at step 5.

Once we have a set of reactions, derived from a substrate
graph, we simulate the biochemical dynamics by standard
Michaelis-Menten �MM� kinetics �11� supplemented by
noise in the enzyme and substance concentrations. MM ki-
netics are used to model enzyme-catalyzed reactions, which
are common in metabolism. The MM description builds on
the principle of mass action �11�—the forward rate of a re-
action is proportional to the product of the concentrations of
the substrates—and uses additional assumptions to simplify
the resulting rate laws. For the reaction i, A+B→C+D
�which is assumed to be enzyme catalyzed�, we use a version
of the two-substrate MM rate law to calculate the flux

ri =
Ei + �E

k0
−1 + 1/k1�A� + 1/k2�B� + 1/k12�A��B�

, �1�

where �E is a random variable modeling fluctuations in the
enzyme concentration. The time evolution of the concentra-
tion of a substance A is then determined by

d�A�
dt

= �conc + �
i

�ri, �2�

where the sum is over all A’s reactions, the sign in front of ri
is positive �negative� if A is a product �substrate� of i, and
�conc is a random noise term modeling fluctuations due to in-
and outflow of A. We seek to use the same information as in
Ref. �4�; therefore we do not use empirical parameter values
�which are, anyway, hard to obtain�. Instead, we assign pa-
rameters in arbitrary units, but we choose them to be reason-
ably relative to one another. �E and �conc are normally dis-
tributed N�0,0.002� �the first argument is the mean; the
second is the standard deviation�. New values for �E and
�conc are drawn at every time step of the integration. The
initial values of substance concentrations, enzyme concentra-
tions, and reaction coefficients �k0, k1, k2, and k12� are drawn
from N�1,1�, N�0.2,0.2�, and N�0.1,0.1�, respectively. We
choose �k=1�10−3, �k=5�10−4, �=1, and �=0.5. The
equations are integrated with a second-order Runge-Kutta-
Helfand-Greenside scheme with time step 0.1, total running
time 2500 time units, and 20 averages over different sets of

initial configurations. These runs are, for each network, av-
eraged over 20 realizations of the reaction-system construc-
tion. For comparison, we also run the dynamics on 100
samples of one of the null-model networks of Marr et al.—
random graphs with the same degree sequence as the original
network. These are obtained by random rewiring—we go
through all edges and for each edge �i , j� randomly pick an
edge �i� , j�� and replace these edges with �i , j�� and �i� , j�
�unless this would introduce a multiple edge or a self-edge,
in which case a new random edge �i� , j�� is selected�.

In the simulations, a vast majority of the substance con-
centrations converge to steady states. A few subnetworks of
oscillating or chaotic concentrations may exist �12�, but in
this Comment we focus on bulk properties. To study the
approach to equilibrium, and fluctuations, we measure the
average standard deviation of the flux through the sub-
stances,

� =�1

n
�

i

�i
2 − �1

n
�

i

�i�2

, �3a�

where

�i =
1

2�
j

	rj	 . �3b�

The sums in Eq. �3a� are over all substances; the sum in Eq.
�3b� is over i’s reactions; the factor 1/2 comes from the
double count of mass flow in and out of substance i, and n is
the number of substances. In a plot of ��t�, the stability of
the steady state can be monitored by two quantities. First,
when the system approaches an equilibrium, ��t� will
decrease—a faster decrease implies a more stable system.
Second, a lower equilibrium level means that the system has
fewer cyclic or chaotic components, and responds faster to
perturbations from the noise, and therefore has more stable
steady states. In Fig. 2 we plot ��t� for MZ’s human meta-
bolic network and the null-model networks. The two curves
almost overlap. For different null-model realizations the
curves may deviate slightly from those of the real network,
but there the null model cannot be rejected with any high
level of significance. The equilibrium level is of the order of
the noise, which means that periodic and chaotic behavior is
almost fully suppressed. To be more systematic, we note that
��t� displays two aspects of stability—how fast equilibrium
is reached and the height of the equilibrium level. Since the
curves do not fit any simple functional form, we measure the
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FIG. 2. �Color online� Time evolution of the average standard
deviation � of the flux. Standard errors are smaller than the symbol
size.
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half-time �the time to reach midway between ��0� and ��	��
using spline interpolation. The p value �fraction of null-
model observations lower than the real value� of the half-
time is 67%; the corresponding value of the equilibrium level
is 65%. The effect of the difference in network structure
between the real and null-model networks is thus, in this
case, negligible. We test a few other sets of parameter values,
organisms �Escherichia coli and Mus musculus�, and a more
straightforward mass action kinetics; and, in all cases, arrive
at the above conclusion. A full scan of the parameter space
would be interesting, however, in this Comment we just
make the point that the conclusion of Marr et al. can be
inconsistent with more realistic simulations, and leave the
insignificance of network structure for the stability of meta-
bolic steady states as a conjecture.

To conclude; simple, stylized dynamic systems—
“dynamic probes”—are valuable tools for studying complex
biological systems. We believe that these should be designed
to model the real dynamics as closely as possible. Marr et al.
�4� propose a dynamic probe to study metabolic steady states
that violates many of the known features of reaction kinetics;
it does not even reach a steady state—the objective of the
study as given in their Abstract. By the collective effort of
researchers, our understanding of metabolism continuously
advances. This does not, however, include the approach of
Marr et al. as their dynamics does not make use of biochemi-
cal information. Relative to biological information processes,
metabolism is a rather simple system, and is believed to be
well described by simple differential equation models. For
the simulations we carry out, the null-model networks are
not less efficient than the real networks in suppressing com-

plex dynamics. If this holds in general, then steady-state sta-
bility is a fundamental property of chemical reaction sys-
tems. The study of Marr et al. does not rule out such a simple
explanation of steady-state behavior—an explanation that is
a common opinion in biochemical literature �cf. Hofmeyr
and Cornish-Bowden’s dictum “mass action is the intrinsic
driving force for self-organization of reaction networks” �3��.
If the reaction kinetics is the sole cause of metabolic steady
states, the steady-state dynamics is a constraint to, rather
than an outcome of, natural selection. This situation is remi-
niscent of the power-law degree distribution of metabolic
networks. Such distributions can also be seen in astrochemi-
cal networks that are not subject to natural selection �13�. We
believe the question of dynamic stability in metabolism
should be studied at a more detailed level than networks,
avoiding the reduction of database information to substrate
graphs. This is not to say that graph theory is useless in the
study of metabolism. On a large scale, metabolic networks
are different from the null-model networks. This is a valid
conclusion from Ref. �4�—the authors manage to separate
the real metabolic networks from both the null-model net-
work we use, and various other types of model networks
derived from the original graph. We believe much informa-
tion about the organization of metabolism lies in the answer
to how this separation occurs. On smaller scales, network
theory can be used to find, e.g., functional modules �10� and
functions of individual metabolites �14�.
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